SOLUTION SHEET 12:

- 1. Recall that for a quartic $f(x) = x^4 + ax^3 + bx^2 + cx + d$ its resultant is given by $\Gamma(x) = x^3 bx^2 + (ac 4d)x (a^2d + c^2 4bd)$ let us denote the Galois group of f by G.f.
 - (i) $f(t_1x) = x^3 + (2t + 3)x 1$ Lets compute the discriminant. $\Delta(f) = -(4.(2t + 3)^3 + 27)$. Note that $\Delta(f) \in \mathbb{Q}[t]$ which is a UFD. Now by Gauss' Lemma, $\Delta(f)$ is a square in $\mathbb{Q}[t]$ if and $\Delta(f)$ is a square in $\mathbb{Q}[t]$. However it can't be a square in $\mathbb{Q}[t]$ as $\Delta(f)$ has degree 3 in t.
 - (ii) $f(x) = x^4 7x^2 + 1$: Notice that reducing f mod 3 we obtain $f(x) = x^4 + 2x^2 + 1$ which can be cheeled to be irreducitle.

We compute its resultant to find $\Gamma(X) = X^3 + 7x^2 - 4x - 28$. Note that 2 is a noot of $\Gamma(X)$ and $\Gamma(X)$ is not irreducible.

Computing the discriminant of f(X) we get. $\Delta(f) = |6(49-4)^2 = |6.45^2 = (4.45)^2$ thus $\Delta(f)$ is a square. This shows that Gif = V.

- (iii) $f(x) = x^4 5x + 2$: It can be seen by Eisenstein with 2 that f is irr.

 The discriminant of f is $\Delta(f) = -27 \cdot (-5)^4 + 256(2)^3$ as it is negative $\Delta(f)$ is not a square. Let us compute its resultent $\Gamma(x) = x^3 + (-5 8)x 25 = x^3 13x 25 \quad \text{reducing} \quad \Gamma(x) \quad \text{modulo 2}$ we get $\Gamma(x) = x^3 + x + 1$ which is irreducible. This shows that $\Gamma(x)$ is irr. & $G_{\Gamma} = S_{\Gamma}$.
- (iv) $f(x) = x^5 x 1$: Consider f as a polynomial over IFg. Note that it has no roots in IFg thus by the AFTin Scherier thm. its irreducible. Now computing its discriminant are see that it is not a square, In fact $\Delta(f) = 19.151$.

 Reducing f mod 2 we obtain $f(x) = (1 + x + x^2)(1 + x^2 + x^3)$ then by Dedekind thm. Gif contains a cycle of type (2,3). Moreover f is irreducible in IFg thus Gif contains a cycle of length f. This shows that f is f and f is f thus f in f in f in f is f thus f is f thus f in f is f in f in
- (v) $f(x) = x^b x^5 + x^4 x^3 + x^2 x + 1$: Notice that $X^7 + 1 = (x-1) \cdot f(x)$. Thus $SF_Q(f(x)) = SF_Q(x^7 + 1)$. Now as n is odd, $X^7 + 1 = -((-x)^7 1)$ thus the Galois group of $x^7 + 1$ is the same as the Galois group of $x^7 1$ by a charge of variable $x \mapsto -x$. This shows that $G_1 = 1/672$.

- First, let us write the discriminant & resultant of $f(x) = x^u + ax + b$. $\Delta(f) = -27a^u + 25bb^3$ $\Gamma(x) = x^3 - 4bx - a^2$
 - (i) (a,b)=(1,1) In this case X^4+X+1 is irreducible as its reduction mod 2 is irr. moreover, $\triangle (f)=25b-27=225$ which is not a square. and $r(X)=X^3-4X-1$ which is irreducible as its reduction mad 3 is $\overline{r}(X)=X^3+2X+2$ and if doesn't admit any roots. This shows that $G_f=S_f$
 - (ii) $(a_1b)=(B_1(2))$ $f(x)=x^4+8x+12$. First note that to show f is in. in Q[x] it suffices to show that is in. in Z(x). It is not hard to see that f(x) doesn't have a root in Z. Moreover trying to unite f as a product of two quadratic polynomials, we see that it doesn't work.

Now $\Delta(f) = 57b^2$ and $r(x) = x^3 - 48x - 64$ reducing r mad 3 we get $\overline{r}(x) = x^3 - 2$ which doesn't have any roots $\Rightarrow r(x)$ is in. $\Rightarrow G_f = A_4$.

- (iii) $(a_1b)=(3,3)$ $f(x)=x^4+3x+3$, Eisenstein with 3 shows that f(x) is in. Now $\Delta(f)=-27.3^4+256.3^3=(25b-81).3^3=175.3^3=7.5^2.3^3$ is not a square. $\Gamma(x)=x^3-12x-9$ as -3 is a root $\Gamma(x)$ is reducible and $G_f=D_{4}$ or C_{4} . Now to see that $G_f=D_{4}$ we show that f is in. over $\Omega(\sqrt{\Delta})=\Omega(\sqrt{2})$. To see that first note that it can be factorized by a cubic as 3 doesn 4 divide $1G_f$ in either case. It can be also seen that it can't be written as a product of the quadratic poly. by direct computation. To obtain the contradiction, use that $i, J_3 \notin \Omega(\sqrt{\Delta})$.
- (iv) $(a_1b)=(5.5)$ as before f(x) is irr. and $\Delta(f)=(25b-135).5^3=11^2.5^3 \notin \mathbb{Q}^2$ We compute $\Gamma(X)=X^3-20x-25$, as 5 is a root, $\Gamma(X)$ is reducible and $G_f=D_4$ or C_4 . Now lets show that $f(X)=X^4+5x+5$ is reducible over $\mathbb{Q}(J\Delta)=\mathbb{Q}(J5)$. It can be checked that

 $f(x) = (x^2 + \sqrt{5}x + \frac{5 - \sqrt{5}}{2})(x^2 - \sqrt{5}x + \frac{5 + \sqrt{5}}{2})$ and thus $G_1 = C_4$.

(v) $(a_1b) = (0,1)$ then $f(x) = x^4 + 1$ in this case $\triangle (f) = 256 = 16^2$ and $r(x) = x^3 - 4x$ is reducible and $G_1f = V$.